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Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and

tests have revealed radar echoes from aircraft wakes in clear air. The results are always

interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmo-
spt,eric turbulence. The goal of the present work was to predict the value of the radar

cross-section (RCS) using simpler models. This is accomplished in two steps. (l) First,
the refractive index is obtained. Since the structure of aircraft wakes is different from at-

mospheric turbulence, three simple mechanisms specific to vortex wakes are considered:

(A) Radial density gradient in a 2D vortex (B) 3D fluctuations in the vortex cores'(C)
Adiabatic transport of atmospheric fluid in a 2D oval surrounding the pair of vortices.

The index of refraction is obtained more precisely for the 2D mechanisms than for the

3D ones. (2) [n the second step, knowing the index of refraction, a scattering analysis is

performed. Tatarski's weak scattering approximation is kept but the usual assumpGons

of a far-field and a uniform incident wave are dropped. Neither assumption is generally
valid for a wake that is coherent across the radar beam. For analytical insight, a simpler

approximation that invokes, in addition to weak scattering, the far-field and wide cylin-

drical beam assumptions, is also developed and compared with the more general analysis.

The predicted RCS values for the oval surrounding the vortices (mechanism C) agree with

the experiments of Gilson (1992) conducted over a wide range of frequencies. However,

the predictions have a cut-off away from normal incidence which is not present in the

measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity

generated at the boundary of _he oval. The reflectivity of a vortex itself (mechanism A)
is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower than

those considered in all the experiments to date. The RCS of a vortex happens to peak at

the frequency (about 49 MHz) where atmospheric radars (known as ST radars) operate

and so the present prediction could be verified in the fllture. Finally, we suggest that hot

engine exhaust could increase RCS by 40 db and reveal vortex circulation, provided its

mixing with the surroundings is prevented in the Imninarising flow of the vortices.

1. Introduction

l. 1. Motivation

The photographs of fluid motion in Van Dyke's (1982) album are all made possible by

an optical effect in the visual range of the electromagnetic spectrum, for instance light
scattering by smoke arid the schlieren method. Fluid motions can also be "visible" to radio

waves: art article by Ottersten (1969) displays remarkable photographs of atmospheric

vortices intaged by radar in clear air. These include bouyant vortex rings, roll cells aligned

with the wind in a stably stratified layer, arid Kelvin-llelmholtz rollers in the tropopause.

Perhaps someday we will see radar photographs of aircraft wakes as well.
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An important practical problem is that the vortex wakes of large aircraft t)ose a haz-

ard to following aircraft and therefore, during instrument rake-offs amt landings, fixed

distances are maintained between aircraft. These spacings are thought to be too conser-

vative most of the time and to increase airport capacity, NASA has set itself the goal of

developing a system which dynarnically sets the spacing (Perry et al. 1997). Several ele-
ments cornprise this system including computer simulation of wakes and vortex detection

from the ground.

In the NASA effort, two methods of vortex detection are being concentrated upon:
doppler lidar at infrared frquencies and radar. Lidar is the more mature of the two

efforts and relies on scattering by aerosols such as water droplets which may begin to

form in the low pressure of the vortices even when cloud is not visible_. Field tests at

airports using [0.6 #m lidar (Campbell et al. 1997, K6pp 1994) have detected vortices

at ranges of up to 300 m; in clear weather this limit is set by tim depth of focus of the

optics. Hannon&: Thom.,on (1994) report ranges of up to 4 km at 2.09/_m using high
energy pulsed lidar.

There are two motivations for considering radar. First is the concern that lidar cannot

work in fog and rain due to increased absorption. Radar, on the other hand, is unaffected
by rain and fog at sufficiently low frequencies. The second factor is that while lidar has

adequate range to protect the modestly sized approach corridor currently set by the
planners, radar has a potentially greater range.

1.2. Previous theoretical work

The results of radar tests that have detected aircraft wakes are all interpreted using the

theory (Tatarski 1961) of scattering by refractive index fluctuations caused by atmo-

spheric motions in clear air. The theory is based on the fact that a turbulent velocity

field in the presence of mean vertical gradients of potential temperature and humidity

lead to fluctuations in refractive index. The velocity field is assumed to be statistically

homogeneous and isotropic locally and to lie in the Kolmogorov inertial range. Refractive

index gradients are therefore also homogeneous and isotropic. One result of the analysis
is that if the wave number of the incident radio wave is k, the only wavevector of the

refractive index capable of scattering to the observer is:

k = (1.1)

where i" and _ are the unit vectors in the incident wave direction and the direction from

the target to the observer,respectively. This is the so-called Bragg condition. In particular
for backscattering (_ = -i) one gets:

k = 2ki. (1.2)

Thus, the only flow wavevector which backscatters is aligned with the radar beam and

has twice the radar wavenumber. According to Tatarski's theory the radar cross-section

per unit volume of isotropic turbulence in the inertial range is (e.g. see Ottersten 1969)

rl = 0.38C_A -'/3, (1.3)

? While scattering is the usually proffered explanation, it is interesting to note that according
to Carlon (1970) water aerosols are capable of strong absorption and emission in the 8-13 /_
range and that "water droplets in this wavelength region behave much more as absorbers and
emitters and much less as Mie scatterers that has been imagined." Two of three vortex lidar
tests were I0.6_ and therefore re-emission could very well be present. This fact suggests that
passive radiometry of condensed water aerosol in the vortex cores might be another method of
detection.
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where A is the radar wavelength and r! has units of L -t. The radar cross-section can

thus be obtained if one knows C_, the so-called second-order structure constant of tile

index of refraction fluctuations. Equation (l.3) has become widely quoted in the aircraft
vortex detection co_xtext as well, with the belief that aircraft wake turbulence creates a

turbulent energy cascade similar to atmospheric turbulence. Equation (1.3) is also used

to reduce experimental data (Chadwick etal., Nespor et al. 1994). In particular, the raw

radar cross-section (RCS) reported by the radar is divided by the volume of the pulse to

obtain r/and then the value of C_, calculated using (1.3), is plotted.

Marshall & Myers (1996) attempted to predict C n as a function of position in a

Reynolds averaged calculation of a statistically 2D vortex wake by using an algebraic

closure relation for C_ in the inertial range in terms of gradients of mean velocity and

potential refractive index. This model is analogous to that given by Ottersten (1969, p.

1184) for atmospheric turbulence.

There are also classified reports (with unclassified titles) cited by Gilson (1992) to

which we were not privy.

1.3. Previous experiments

(i) Noonkester & Richter (1980) detected the wakes of aircraft takiny off (f = 3 GHz,

)_ = I0 cm, range R =100-300 m). Their FM-CW radar, in contrast to a pulse radar,

transmits and receives continuously allowing for a small minimum range. An interesting

sinusoidal pattern was observed in the trace of target height (above a fixed ground

location) vs. time. They interpreted this to be hot engine exhaust spiraling around each

vortex. Whether engine exhaust might be put to use for vortex detection during approach

is briefly discussed in §6.2.

(ii) Using a similar radar, Chadwick et al.(1984) detected the wakes of both departing

and arriving aircraft but do not distinguish between the two in their results. The radar

used was rather modest (200 W of power, 8 ft diameter dish) and the ranges were R _< 1

km. The distribution functions of RCS in the atmosphere ahead of the plane and the

wake behind the plane overlapped a little and for positive identification of the wake, the
authors suggested use of the spread in doppler velocity. They suggested two mechanisms

for scattering. First, they argued that aircraft vortices created a turbulent cascade similar

to those assumed in the theory of atmospheric scattering (Tatarski 1961) but with a C_2

higher than that of the ambient atmosphere. They found no directional sensitivity which

lent some credibility to the the assumption of isotropy. Secondly, they suggested that

heat and moisture from the engine further increases reflectivity.

(iii) Using a 1 MW pulse doppler radar (f = 5.6 GHz, R = 2.7 km), Nespor et al.(!994)

detected the vortices of a small fighter aircraft in approach configuration looking axially

along the vortex.

(iv) So far, Gilson (1992) has the best documented and controlled experiment. Us-

ing powerful pulse doppler radars having 2-7 MW of peak power, he measured the radar
cross-sections of the wake of a C-5 a aircraft at a range of 15 kin. Returns were detectable

at five frequencies between 0.162 Gl-lz and 5.7 GHz bat not at 35 GHz. From the observa-

tion that the radar cross-section wa_ relatively flat as a function of frequency and dropped

off somewhere above f = 5.7 GHz, he concluded that particulates were not involved (they

would give f.i Rayleigh scattering). He noted that the frequency dependence was not the

Kolmogorov fl/3. The RCS decreased with altitude m_d vanished above the tropopause

from which he concluded that the scattering mechanism was related to "low altitude

climate." Fluid mechanicians will anticipate that the relevant fact here is the decrease

with height of the Briint-V_iisiila frequency, tire appropriate measure of stratification. He

found that the RCS (measured 1 km behi_xd th_, plane) was insensitive to engine thrust
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and the RCS (measured at 10,()01) altitude and 0.6 km behind the plane) was insensitive

to flap setting. He thus concluded that the main mechanism was "turbulent mixing by

the wake vortices of existing atmospheric index of refraction gradients."

(v) For completeness, we mention a test (lammzzelli et al. 1998) in which a radar was

used to detect index of refraction variations caused, remarkably, by sound waves latmched

as a tracer into the aircraft wake from the ground. The sound waves are scattered by the

vortex flow and the doppler st,ift they induce on a radar beam carl be measured. This

technique is an extension of a routinely used method for wind profiling and is known as

RASS (Radio Acoustic Sounding System).

1.4. Present work

Led by the observation that turbulence is suppressed in an aircraft vortex, §2 considers

three simple laminar and largely two dimensional mechanisms for producing refractive
index variations.

Given the index of refraction, §3 performs a scattering analysis using the Born weak

scattering approximation. It is argued that the usual assumptions of a uniform incident

wave and a far-field are not generally valid for a long and coherent target such as an

aircraft wake. Therefore the shape of the incident beam and fill Green's function are

taken into account. This analysis has to be implemented numerically and so to provide a

simple analytical result, and for insight into the results, a simplified analysis is presented
in §4. This analysis makes the approximations of a far-field and a cylindrical beam that

is wider than the cross-sectional width of the target.

Section 5 presents numerical predictions of the radar cross-section for the 2D mech-

anisms, comparing the approximate analysis, the full Born analysis and experiment.

Section 6 presents some practical reccomendations including a sample design for an ST

type radar to detect the vortices themselves.

2. Three mechanisms for inhomogeneities in dielectric constant

The three sub-subsections which follow discuss the change in dielectric constant due to

three effects: (i) radial density gradient in the core of each vortex, (ii) three dimensional

instabilities in the vortex cores, and, (iii) transport by the vortices of the atmospheric

density. Following Gilson (1994) we assume that particulates are unimportant to the

scattering mechanism in clear air.

The refractive index n of humid air for frequencies below 20 GHz is given by Thayer

(1974):

(n - 1) x 10_ = 77.6 _- + 64.8 -_- + 3.776 x 105 . (2.1)

Here p_ is the partial pressure (mb) of dry air, p, is the partial pressure (mb) of water

vapor and T is the temperature (K). The first two terms are due to the induced polar-

ization of air and water molecules, respectively. The third term is due to the permanent

dipole moment of the water vapor molecule, p_ can be obtained from the relative hu-

midity, RH - Pv/Psat, where Psat is the saturation pressure of water vapor and can be

obtained as a function of temperature using the formula in Reid et a1.(1987, p. 757). The
dielectric constant is simply e = n '2.
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2.1. Radial density gradient in the vortex cores

The radial momentum equation (for laminar flow) together with the assun, ption of ho-

mentropic flow can he integrated to yiehl the radial density variation in each vortex:

- - - --:r-, dr (2.2)
p_ r c_¢

Here c_ and p_ are the ambient speed of sound and density, respectively. Equation (2.2)
applies to both the density of water vapor and the density of air.

Two profiles for the circumferential velocity, t'_ were considered. The first is that of
the Lamb-Oseen vortex:

F_ = _F (1 -e-r2/_:) . (2.3)

The following values, provided by Rennich (1997) as represental;ive of a large commercial
aircraft were used: core radius, ro = 4.724 mar, d circulation, F = 526 m"s -1. _Ve take

the core radius, r0, to be the location where the tangential velocity has a peak and for

the Lamb-Oseen profile we have 5 = r0/1.12141. With these values Eqs. (2.2) and (2.3)
give a small density dip: p(O)/p_ = .998.

The second profile of circumferential velocity was provided to us by Dr. P. Spalart of
Boeing and represents his fit to flight observations:

Here

{ i189r1_, for ;/< .0103,
F -1/14 , (2.4)

V0 = 2zrr/b----_ (1.27 + log(r/)/4) -14 + 1] , otherwise.

r

r/-- bo" (2.5)

We chose b0 = 47.88 m, the value of vortex spacing provided by Rennich (1997). This

profile gives a greater minimum: p(O)/p_ = 0.988. Figure 1 plots the relative change

Ae_ - 1 (2.6)
_0

in dielectric constant from the ambient value (¢o) for the two velocity profiles and for

two cases of ambient relative humidity (dry and 80%). The ambient temperature and

pressure were taken to be 15° C and 1013.25 rob, respectively. We,observe that humidity

has a weak influence and the profile of Spalart has a more pronounced dip of Ae_ at the
vortex axis _ -6 × 10 -6.

2.2. Three:dimensional fluctuations in the vortex cores

Little is known about turbulence within an aircraft trailing vortex but it has come to

be appreciated that both the cascade to small scales and turbulence production are

drastically reduced by rotation. Turbulence models currently used in aerodynamic as
well as atmospheric codes are unable to capture these effects.

With respect to the first effect, the rate of energy transfer and hence dissipation is

reduced (see, for example, Bardina et a1.1985) because rotation scrambles non-linear
interactions.

A more important effect is the drastic alteration of turbulence production. There are

three mean velocity gradients which can act as turbulence production mechanisms within
the vortex:

(i) There is a jet/wake flow along the vortex axis hut this decays quite rapidly behind
the wing.
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FIGURE 1. Radial distribution of Aer inside a vortex. --
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.... : Spalaxt's profile, (Eq. 2.4), (RH)oo = 80%.

0.20

: Lamb-Oseen vortex, (RH)_¢ = 0%;
: Spalart's profile, (Eq. 2.4), (RH)oo = 0%;

(ii) There is a circumferential velocity around the axis. In the central part of the core

the production of turbulent kinetic energy is zero because of solid body rotation. As one

moves away from the center, fluid elements are sheared as they rotate. The Bradshaw

criterion for stability of shear in a rotating frame when applied to a vortex with single

sign vorticity predicts that the flow is locally stable at each r (LeBlanc & Cambon 1997).
Indeed Qin (1998) found via direct numerical simulation of turbulence within the vortex

that there is negative production of turbulent kinetic energy'.

(iii) Finally, the only remaining mechanism for turbulence production is the strain

induced by one vortex upon the other. It is responsible for the commonly observed Crow

(1970) instability which has a wavelength of about nine times the vortex separation. A

shorter wavelength instability, called the Widnall instability in the context of vortex rings

is also possible at sufficiently high Reynolds numbers. This instability has been observed

in the laboratory by Thomas & Auerbach (1994) and Leweke & Williamson (1998).
The question arises whether even shorter waves can be excited by the strain in the

presence of the stabilizing effect of the rotating shear. To address this question without

performing a full stability analysis of a vortex pair we consider a stability analysis which

accounts for only the local velocity gradient. Such an analysis is valid for waves much

smaller than the vortex core size. The local velocity gradient following a fluid element

has three parts: rotation, strain induced by the other vortex and rotating shear. The first

two alone lead to the elliptic instability (e.g. Landman & Saffman 1987). To this we add

rotating shear. The velocity gradient matrix then becomes:

,4 = 7 - e 0 0 + S - sin" f_t sin f_t cos f_t 0 . (2.7)
0 0 0 0 0 0

The first term represents the elliptic streamline flow which has rotation and strain while
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FIGURE 2. Amplification factor of disturbances at various ]ocations in a Lamb-Oseen vortex

subject to strain by another vortex ----- : r/5 = 0.0; ........ : r/5 = 0.01; .... : r/5 = 0.10;
--:r/6=0.20;------ :r/_=030.

the second term represents a shear (of rate S) rotating with angular velocity _. The

value of f_ was chosen to be the rate of rotation of fluid particles in the elliptic flow,

i.e. D = (3, 2 - e'z) 1/2. Had f_ been chosen to be the rate of rotation, 7, of fluid particles

without the strain then the shear axes would get ahead of the axes of a fluid element

which is not physical. For an axisymmetric circumferential flow ue(r) we have

u0 andS=-(aue u# ) (2.87=-;- k o,- 7 _ • )

The strain rate due to the other member of a vortex pair is

F

e = 2 x 27rb----_' (2.9)

where the induced strain has been multiplied by 2 in order that the growth ,ate and

ellipticity of the elliptic streamline flow match that of a vortex of uniform vorticity sur-

rounded by potential flow. The evolution of a single mode was considered at several values

of r/5 inside a Lamb-Oseen vortc× with a value of 5/bo = .088 given by Rennich (1997)

for a large aircraft in approach. The modes investigated were those known to be the most

unstable for the elliptic streamlii:c flow. These modes have wavevector lying in a cone

at 60 ° relative to tile vortex axis. Within this cone the initial azimuthal angle q¢ is free.

Figure 2 shows the amplification factor of the velocity perturbation during the time that

the vortex pair descends five vortex spacings. The different curves are for different loca-

tions, r/cf within the core. At the center of the core (chain dashed line) there is no shear

and the elliptic instability is active for all qa. As one moves outward, the shear stabilizes

all modes except those located in a thin band near T = 90 °. This wavevector direction

corresponds wavefronts that are parallel to the shear flow and therefore not defor_ned
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by it. By r/5 = 0.3 (long-dashEd curve) the growth of even these waves is suppressed

by the shear. WE thus conclude that roughly only tile inner 20% of tile vortex core, or a

diameter of 170 cm for a large airplane, is capable of supporting an elliptic instability,
and even this produces small amplification factors. The instability will be subject to a

viscous cut-off. Using the analysis ofLandman ,_ Saffman (1987) one estimates that for a
large airplane the cut-off occurs for scales < 14 cm. Down in scale from the cut-off there

may be smaller scales due to the non-linear cascadE.

2.3. Dielectric constant variation due to atmospheric stratification

In the literature it has been postulated that the scattering mechanism for aircraft vortices

is "turbulent mixing of atmospheric index of refraction gradients" (Gilson 1994), the
turbulence being assumed to be similar to atmospheric turbulence. This sub-section tries

to develop a concrete picture for the quoted phrase.

2.3.1. The 2D picture without velocity fluctuations

Suppose that the vortex pair descends through a distance Az = z! - z from its altitude

of formation, z/. As it descends it carries, within an oval, ambient atmospheric fluid from

z!. The oval has semi-axes 1.045bo and 0.865b0 (Milne-Thomson 1968, p. 360) which we
shall approximate in the scattering analysis by a cylinder of circular cross-section of

radius a = 0.95bo.

Let tildes denote fluid properties within the oval and let overbars denote properties in

the ambient atmosphere. Then introducing the total pressure, p = p_ + Pv, into (2.1),
converting to SI units and eliminating pressure in favor of density using the ideal gas law

we get the following equation for the difference in index of refraction between the oval

and the surrounding atmosphere:

[_(z) _n(z)l × 106 =223_(z)_._(z)l_36.7[_(z)- _v(z)]4_l.08× 106 [_(z) _(z)"

L T(z) T(z)
(2.10)

As it descends, the fluid in the oval compresses adiabatically in response to increasing

ambient pressure. A density difference, _'(z) - _(z), from the ambient value will remain

only if the ambient atmospheric density gradient is different from the adiabatic one. This

difference is usually expressed in terms of the parameter N, the Briint VS.is_l_ frequency

defined so that for small Az (Pedlosky 1979)

_( z ) - "fi(z ) = "fi(z ) N'2 A z. (2.1 l)
g

The first term in (2.10), which represents the dry air contribution, is thus determined.

Since the pressure of the descending fluid is equalized to the ambient we can obtain

its temperature using Eq. (2.11):

- = (2.12)
g

To obtain _v(z), the ambient vapor density, we introduce the ambient relative humidity

RH(z) as an input parameter so that _v(z) can be obtained from

_(z) = P,,(z) RH(z)p,at(T) (2.13)
-_(z) e(z'-=---)= -fi(z) '

where the function ps,t(T) is given in Reid et al.(1987, p. 657). Finally, to obtain pv(z),
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Case RH/ R'-H(z) N ins -t Ae_
I 0 0 0 0
2 0 0 .017 -9.8 x 10 -7

3 .60 .60 0 -2.8 x 10-7
4 .6{) .60 .017 -I.I × I0 -6
5 .592 .603 0 -4.4 × lO-6
6 .592 .603 .017 -2.8 x 10 -6

TABLE 1. Dielectric constant in developed in the oval for various atmospheric conditions after
1.5 1- units.

use the fact that all constituents of the descending air compress by the same factor so
that:

_ (2.14)

Then introducing the relative humidity at formation (RH/) as an input parameter one
obtains:

"pv(z) = RHfpsat('T/)-fi(z) [I +
f (z) O

The value of N near sea level varies from average summer levels of 0.014 s-l to mild
winter values of 0.02 s-t to a value of 0.03 s -1 for a Fairbanks winter (W.D. Kriese,

Boeing Aircraft, Private Communication; Pedlosky 1979, p. 331). Thus, winter weather

produces greater reflectivity than tropical weather (for the same vortex descent altitude
and neglecting humidity). What is the range of Az that is relevant for the wake hazard

problem? The lifetime of trailing vortices has been measured to range between 1.5 and

8 v units (Spalart 1998, his fig. 1) where one v unit corresponds to the time takes for a

vortex pair to descend one vortex separation distance. Hence the minimum separation in

time between aircraft that could ever be contemplated (in the absence of techniques to

destroy vortices) is 1.5 7" units. A vortex separation distance of b0 = 47.88 m implies that
the smallest detectable voltex descent should be 72 m. This assumes that stratification

neither impedes nor speeds the descent.

Table 2.3.1 shows Ae_ ,,_ 2An for various atmospheric conditions taking Az = 61 m, a

slightly more conservative value. We used P(z), "fi(z), and T(z) values for the Standard

Atmosphere at sea level. Cz.se 1 is the trivial case (neutral and dry armosphere). Case 2

is for stably stratified dry mr. Case 3 has a neutral atmosphere with uniform humidity.

Case 4 combines the stratification of case 2 with the humidity of case 3. We see that the

total effect is not quite additive. Case 5 uses the vapor pressure for the model atmosphere
given in the Handbook of Geophysics (1960, p. 13-5) in which the air is slightly drier at

the higher altitude. The resulting A¢, is higher than for unifornt humidity. Case 6 has

both stratification and humidity gradient.

2.3.2. Dielectric constant of the oval in Gilson's experiment

To secure a value for the dielectric constant A¢, for tile experiment, performed on

Kwajalein atoll, we used the deusity and index of refraction vs. height sounding given by

Gilson. Since gradients relative to adiabatic are needed, one quantity had to be assumed

to obtain them. This was the temperature at flight ahitude (5000 ft) which we took to be

295 K assuming a balmy sea level temperature of 85 ° F and a lapse rate of -.005 K/re.

By comparing the measured index of refraction with the value for dry air at tile local
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density we gathered that 7% relative humidity must have been present at flight altitude.
"Pile _fiue of tile Brfint-V/iis_ilii frequency N wlts determined to be .017 s-J by comparing

the actual density gradient with the adiabatic one. We need the descent altitude of the
oval at the first measurement instant 66 sees after aircraft passage. Using the flight speed

and nominal aircraft weight provided together with the theory of an elliptically loaded
wing, the vortex circulation and vortex separation were inferred to be [" = 387.6 n("/s

and b0 = 53.4 m. For vortex pair descent unaffected by stratification, this yields a descent

of 77 m in 66 sees. The parameter determining the effect of stratification on vortex pair

descent is N_ = 27rNho/F (Spalart 1996). Its value is 0.79 and using the simulation

results of Spalart (1996, his figs. 4 and 10a) we concluded that that stratification would
shorten descent from 77 m to about 64.6 m. Thus we obtained -_e, = -8.4 x 10 -7.

2.3.3. The boundary of the oval

(I) Laminar boundary Thermal diffusion smooths the gradient in .Xp at the boundary

of the oval and the flow sweeps away and replenishes the diffused _p. This may be locally

modelled as a strained diffusion layer: at equilibrium we have (e.g. Leonard et a1.1987):

Ap(0) = /Xp(l) erf(rl/6diff) , 6diff -- (2_¢/e) 1/2 (2.16)

where r/ is normal to the interface, a is the thermal diffusivity and e is the strain rate.
For a Prandtl number of 0.7 and

F

e - 2rr(bo/2)"' (2.17)

which represents the strain rate at a distance of half the vortex spacing, one gets

--1/2 ",

(_diff _-_- 2.1bo ('_) (2.18)

which equals 2.2 cm for Gilson's experiment.

When flaps are deflected (as during a landing) multiple vortices are created on each
side of the wake and their interactions can lead to periodic ejection of fluid from the oval

and engulfment of ambient fluid. This leads to a stretching and folding of diffusion layer

as shown in the simulations of Spalart (1996). However the minimum thickness of the

folded layers cannot be smaller than the estimate (2.18).

Any vorticity fluctuations within the core will induce potential flow fluctuations in the
outer flow. This will also cause the boundary of the oval to become distorted. Maxworthy

(1970) provides experimental evidence for this in the context of vortex rings and Rom-

Kedar et al.(1990) provide a geometric description.

(ii) Turbulent boundary In the presence of stratification baroclinic torque generates

a shear layer at the boundary of the oval (Spalart 1996). Can this shear layer become

turbulent? To answer this, the Reynolds number Re_ = (AU/2)5/v was estimated and

compared with a critical Reynolds number. Here AU and 5 are the velocity jump and

laminar thickness respectively of the shear layer and were estimated as follows: (i) Spalart

(1996) provides a model (his Eq. 6), calibrated using simulations, for the circulation

generated in the shear layer. This allows one to infer the average circulation per unit

length (hence the average velocity jump AU) along the oval perimeter. (ii) The shear

layer thickness, set by balance between viscous diffusion and vortex induced strain, is

given by 5 _ _rl/2bo/v/- _.

The Reynolds number was found to grow linearly with descent height and even with a

descent a quarter of what it is at 66 secs, we have Re6 = 73 for Giison's (1992) experiment.

According to the analysis of Betchov & Szewczyk (1963) for a shear layer, this is quite
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unstable with an e-folding time of about 2 secs. At this rate, transition to turbulence in

the shear layer would take about 20 sees. In reality, tile shear layer is curved. However,

since tile baroclinic circulation is opposite that of tile primary vortices, the circulation

decreases outward and so curvature can only fi|rther (lestabi[ize the layer. Thus we are
convinced that ttle boundary of the oval is turbulent in Gilson's measurements.

The circulation in the Kelvin-tlehnholtz vortices can be estirnated as the circulation

in one wavelength of the instability. From it the strain rate in the braid region can be
obtained and thence the thickness of the braids. At 66 secs, 5braids -- 0.45 cm. This is

smaller than 5di ff we expect it to deternfine the the wavelength at which the RCS cuts
off.

2.3.4. Evidence for the role of stratification in radar reflectivity

Here we discuss facts in|mediately accessible from the experiments. Later in the paper
we will perform a more quantitative comparison.

(i) Gilson observed increasing RCS with distance behind the plane. Nespor et a1.(1994,
p. 658) noted that the cross-section tended to increase as the vortex dropped into the

lower beams. Their respective interpretations were developing turbulence and growth

of the turbulent region (so that a greater fraction of the radar pulse volume consisted

of turbulence). However, the observations are more simply explained by the increasing

refractive index contrast between the oval and the ambient. Indeed RCS o¢ (AE_) 2 ¢x
(Az) 2 and (Az) _ t (when the descent is not impeded by stratification). Thus, the radar

cross-section should increase by a factor of 4 (6 db) for every doubling of the distance
behind the plane. Several plots in Gilson (1992) show an increase that are a little smaller

than this value probably because the descent is impeded by stratification.

(ii) Gilson notes that the RCS decreases with altitude. This is consistent with the

decrease in the Brfint-V_iis/il/i frequency, N, with altitude.

In conclusion, there is experimental support that atmospheric stratification is playing
a role in experiments in the simple way we have described. Since stratification has sea-

sonal, diurnal and geographic variations its use as a basis for detection would have to be

combined with atmospheric measurements and would be unusable in neutral conditions

or when the vortex descent is strongly impeded by stratification.

3. Scattering Analysis with the Born Approximation

3.1. General formulation

The scattering analysis for an aircraft wake has two peculiar features that; ough_ to be

recognized. (1) The wake is a long target which always fills the incident beam in one

direction and is quite coherent along this direction. Thus one cannot follow the type of

analysis performed for a collection of rain drops, for instance, where it is assumed that

at each point within the beam, a plane wave of uniform intensity and polarization is

incident on each drop and the scattered powers of all the drops simply add because the
scattered fields are uncorrelated. In the present situation, one has to account for the

variation in beam properties across tile whole target. (2) More troublesome is the fact
that tile usual far-field assumption cannot be made because as the distance from the

radar to the target is made larger, the illumivated size of the target also increases! More
concretely, the condition that should be satisfied in the far or Fraunhoffer zone is:

7rL_

err = )_R, << 1, (3.1)
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where R_ is the distance from the receiver to the target, Ls is a characteristic size of

tile scattering region and A is the wavelength. Tile difficulty in satisfying (3.1) for a
beam filling target arises from the fact that Ls = RtAO/2 grows with range Rt from

the transmitter to the target. Here A0 is the half-power beamwidth. In particular, for

co-located transmitter and receiver (3.1) becomes:

7rR, (A0)'-'
err- << 1. (3.2)

Ironically, the far-field condition becomes more difficult to satisfy the further one is

from the target. The experiments of Chadwick et al.(1984) and Gilson (1992) we have

6 _< ¢_r _< 15. Tatarski's (1961) analysis makes the assumptions of a far-field and a

uniform incident field. Hence it is not formally valid for a coherent wake. Fortunately,

the problem remains tractable even if these assumptions are relaxed.

We consider time harmonic electric and magnetic fields

E(x,t) = Re [E(x)e-i'_t], H(x,t) = Re [H(x)e-i"t], (3.3)

where E and H are complex. Rationalized MKS units ( Jackson 1962, p. 611) will be

used to write the electrodynamic equations. The starting point is the solution to the

scattering problem as an integral equation (Ishimaru 1978, vol. 1, p. 16):

l'Is(x) = _ A_r(x')E(x')G(x, x') dx', (3.4)

E(x')
Ae_(x') = 1. (3.5)

Here

eikA

G(x,x') - 41rA' A _= Ix- x'h

is the free space Green's function and IIs is the Hertz vector of the scattered field:

(3.6)

3.2. The Born approximation

The integrand in (3.4) contains the total electric field (incident + scattered) which is in

general unknown, however, since in the present ease Aer = (9 (1(1-°) one can invoke the

Born approximation that it can be set equal to the incident field. This corresponds to

retaining only the first term in a Neumann series solution to the integral equation. The

Es = V x V x Hs, Hs = -iw¢0V x H_. (3.7)

To calculateE and H from II requiresevaluatingcurls (with respect to x) of the

integrand in (3.4).We listthem here for completeness. Denoting by C = Ae_(x')E(x')

the vectorin the integrand which isconstant with respectto x we get:

V x CG = VG x C, (3.8)

V x V x CG = V x (VG x C) = (C- V)VG- CV"G. (3.9)

Equations (3.8) and (3.9) involve first and second derivatives of G which are:

OG 1 e ikA

Oxi - 4_r A2 xi (ik- I/A), (3.10)

O'ZG 1 e ika

OxiOx I -- 4rr A4 [(z26ij + ikxixjA - 2xlxj) (ik - l/a) + xixi/A], (3.11)

where 6ii is the Kronecker delta.
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FIGURE 3. Wake coordinate system. Use the indicated fingers of the left hand to follow the
transformations (3.15)-(3.19) discussed in the paper.

Born approximation is valid when the scattered electric field is much smaller than the

incident field in the region of the target. Equations (3.4), (3.9) and (3.11) imply that the
following three conditions have to be satisfied for this to be true:

Ae, {1, kLs,(kLs) 2} << 1. (3.12)

It should be noted that Ishimaru (1978) gives only the second condition perhaps because
he was thinking of scattering by particles smaller than a wavelength. In that case kLs < 1

and the second condition is the more stringent one.

3.3. Calculation of the radar cross-section

The definition of radar cross-section RCS (e.g. Skolnik 1970, p. 1-4) can be written as:

RCS = 47rR_ power flux density spatially averaged over the receiving aperture
spatial maximum of power flux density across incident beam at target"

(3.13)

Power flux density has div, iensions of power per unit area. The numerator in (3.13) will

be evaluated at a single point which is valid if the size of the receiving aperture is smaller

than Rr, all assumption which is difficult to violate. Both numerator and denominator

will be evaluated as time averages. The time averaged scattered power flux density vector
is

l
S_(x) = 5Re {E_(x) x H_'(x)}, (3.14)

where Re denotes the real part. Tile numerator in (3.13) was evaluated as ISs(x)]. As a

check, the numerator was also evaluated as Si(x) • o where _ is a unit vector (defined

in (3.25) below) from the target to tile receiver. A difference between the two was never
detected.

Appendix A.2 shows that the denominator in (3.13) is simply (l/2)cz0.



14 K. Shariff and A. Wray

3.4. Coordinate systems

We choose the coordinate system of x and x' in the integral (3.4) to be located in the

wake with a convenient origin. In particular for an axisymmetric target the origin is

placed at the target axis as shown in figure 3, its axial location being chosen to coincide

with the axial location where the beam centerline intersects the xy plane. In particular

tile beam centerline is chosen to intersect the xy plane at (x = 0, y = y0), y0 being the

beam pointing error.

Appendix A obtains the electric field in the incident beam given the electric field on

a surface (the aperture) near tile antenna. The incident field is given using coordinates

centered on the aperture. In the body of the paper we use (x', y', z') for aperture coor-

dinates. The plane of the aperture is x'y" while z" points normal to the aperture. We

now relate beam coordinates (x',y', z') to wake coordinates (x, y, z) by performing a

series of rotations and translations. These transformations serve to define the viewing

angles (c_t, fit) of the target from the transmitter. Similarly, (a_, _,) are viewing angles
from the receiver.

Imagine that the transmitter is looking at the wake from the same side as the reader is

looking at figure 3. This figure also shows which fingers of the left hand the reader may

employ to visualize the transformations. The reader's palm will eventually become the

plane of the aperture, the middle finger will become the direction of propagation, and

the first finger will become the direction of polarization. The first transformation turns z

(the middle finger) away from the reader so that it can eventually become the beam axis.
The x-axis (first finger) is also simultaneously flipped. The second transformation shifts

the origin to (x = 0, y = Y0) to ensure that the beam axis intersects the xy plane where

we want it. The coordinates resulting from the first two transformations are therefore

y(a) = y - yo • (3.15)
z (1) -z

Next, rotate the coordinate system by angle fit E [0,2rr] around x (t) axis. This is a

counter clockwise rotation about the first finger. Thus _t is an elevation angle to the

target. We have

(.,) (,0 0y(2) = 0 cosflt -sin_t Y--Yo • (3.16)
z (2) 0 sinflt cos_t -z

Next is a rotation by angle at E [-rr/2, rr/2] about the y(.2) axis. This is a counter-

clockwise rotation about the thumb and we get

y(3) = 0 1 0 9 (2) . (3.17)

z (3) sin ctt 0 cos at z ('')

Next, translate the coordinate system in the negative z (3) direction by the range Rt from

the transmitter to the point x = (0, Y0, 0) on the target:

//(4) = y(a) + 0 (3.18)

2:( 4 ) Z( 3 ) R t

Finally, to the get the polarization vector oriented correctly, the coordinate system is

rotated by angle 7 about the z (4) axis (about the middle finger, counter-clockwise looking
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into the palm):

y2 = --sin 3, cos"y 0 y (1) . (3.19)
z 0 0 1 z (4)

The x" axis (first finger) now points along the polarization direction. Putting all the

transformations together gives:

x" = cos 7 {-x cos at - sin at [(y - Y0) sin St - z cos _t]} +

sin7 {(y - Yo) cos3t + zsin 3t}, (3.20)

y" = COS7 {(y -- y0) COSflt + zsin3t} -

sin 7 {-x cos c_t - sin ,_t [-z cos 3t + (y - Yo) sin 3t] }, (3.21)

z" = Rt - x sin at + cos_kt [-z cosft + (y - Y0) sin _t]. (3.22)

The incident electric field is in the _" direction and to obtain its (x, y, z) components for

use in the integral (3.4) we note that

._" = - cos at cos 7_ + (cos _t sin 7 - cos 7 sin at sin fit) :Y+

(sin ft sin 7 + cos 3' sin at cos fit) z, (3.23)

A

from (3.20). Just as the "incident direction" i from the transmitter to the point (0, Y0, 0)
is

i = _* = - qin ctt_ + cos at sin _t:Y - cos at cos _tz, (3.24)

we define the "observer direction" 8 from the point (0, Y0, 0) to the receiver in a similar

way but using angles a, and _ and reversing the sign of the vector:

8 = sin a_ - cos at sin fr.Y + cos a_ cos f_, (3.25)

The location of the receiver is then:

x, = Yo:Y + Rr_. (3.26)

3.5. Numerical integration procedure

The numerical integrations required to evaluate the integral (3.4) were performed using
two methods.

Method A: This is the more general but less efficient of the two methods. It uses

Simpson's rule in cylindrical coordinates (x, r, ¢). The integral over the infinite direction

x was truncated at Ixl = 3Ub where Ub = Rt sinOb is the characteristic beam radius at the

target, 0b being the half bearnwidth. In the radial direction, the integrals ware._runcated

at r = 3g_ when the vortex was the target. When the oval is the target, the integrand

is zero for r > a. The number of quadrature points in each direction was determined

from the input parameter Nqt which is the number of quadrature intervals desired per
characteristic length I of fluctuations of the integrand. The characteristic length in each
direction was chosen as follows:

lz = min(A, Ub) , l_b = rain(A, Ub), l, = nfin(A, Ub, 6,), (3.27)

where

{_e, if the vortex is the target, (3.28)g_ = (l/2)a, if the oval is the target.

If the length of art integration is L then Nt = int(L/l) + 1 characteristic lengths cover

the integration length and the oumber of quadrature interwds was determined as N,_ =
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N,_¢max(3, Nt), the purpose of the max being to ensure a minimum number of quadrature

points regardless. For each calculation of radar cross-section presented for this method

we began with l_t = 6 and kept on doubling it until two successive doublings showed no

perceptible change in the radar cross-section. Computational cost prevented use of this

method above f _ 0.16 GHz.

Method B: This method was developed to efficiently calculate the radar cross-section

for the oval at the relatively high frequencies of Gilson's (1992) experiment. The imple-

mentation is currently specialized to backscattering for the oval (and for the oval with a

slice of ambient fluid; see figure 8). For brevity we will describe the method for normal
incidence and 3t = 0.

Each of the six integrals needed to evaluate the scattered E and H fields is of the form:

I = f A(x, y, z)e iO(z'y'z) dxdydz , (3.297

where z is the direction along the beam axis and the cross-beam coordinates are (x, y).

The basic idea of the method is to divide the integration interval in a given direction

(say () into many sub-intervals and to approximate the amplitude and phase in each

sub-interval as a linear function of _:

I = A({) e i¢(¢) d_ _ A{ (A({I) + _AA)e i(¢(¢')'¢a¢) d_, (3.30)
1

where

AA -- A(_'2) - A((_), A¢ -- q_((2) - ¢(_1). (3.31)

The integral in each sub-interval can then be obtained analytically:

i A " '

The integral along the beam (z direction) was done first and tests revealed that one

sub-interval was sufficient to obtain an accurate integral for each region. For the sliced

oval, one interval for each piece was used. The resulting integral over an interval has

the form (3.32) with ( replaced by z. Now the two terms in the result (3.32), when

considered as a function of the remaining coordinates, are again in the basic form (3.30)

with amplitudes and phases a function of x and y. Hence, the same method can be
applied successively in these directions. In these directions hundreds of sub-intervals

were required for convergence.

4. Approximate scattering analysis

4.1. General formulation

To obtain analytical insight into the numerical results and as a check on the numerics for

special cases, it is useful to have closed form expressions which approximate the radar

cross-section. Such expressions are developed in this section and, later in the paper, their

predictions will be compared with the formulation of the previous section.

Four assumptions will be invoked. The first assumption is that of the far-field which

holds when (3.1) is satisfied. In this case the scattered electric field implied by (3.4) is

given by (see lshimaru 1978, vo[. 1, p. 17):

Es(x) = f(_,_)ei_R_/R,, (4.1)

k /vf(a,]') - _ {-_x [a x E(x')l } Ae,(x')e-ikx"a dx ', (4.2)
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The second assumption is the Born approximation of the previous section: E(x')

El (x') in the integrand.

The third approximation replaces the conical incident beam by a cylindrical beam in

the vicinity of the target as explained in Appendix A.2. The incident electric fiehl then
has the form

Ei(x) = _" F(u; a)e ik:" , (4.3)

where

u=(x'2+y'2) 1/2 , (4.4)

is the normal distance from the beam axis. Substituting for z" from (3.20) and using
(3.24), the incident electric field takes the form

Ei (x) = _" F(u; a)eltCXge it_, (4.5)

where

¢ = Rt - Yo cos c_t sin 3t. (4.6)

Two types of beam shapes, justified in the appendix, will be considered. The first type
is Gaussian:

F(u; a) = e -'?/_2, (4.7)

and corresponds to a Gaussian illumination of the transmitting aperture. 3he second

type corresponds to that produced by a uniformly illuminated circular aperture:

F(u; o') - 2Ji (u/a)
(4.8)

Using (3.20) we have

u.Z = x.'Z + y.'2 = Ax.Z + Bx(y - yo) + Cxz + D(y - yo) 'z + E(y - yo)z + Fz 2, (4.9)

in which

A = cos 2 at, B = sin 2o_t sin/3t, C = - cos 13tsin 2oq,

D = cos _ fit + sin 2 at sin .) _3t, E = cos 2 c_t sin 2_3t, F = cos 2 fit sin 2 at + sin 2 _3t.

(4.10)
Keeping all the terms in (4.9) makes the resulting integrals analytically intractable. Thus

we make the fourth approximation that the beam is much wider than the cross-sectional

dimensions of the wake. In the wide beam limit, the beam amplitude varies only along

the axis of the wake an:" is constant within each cross-section of the wake..Thus setting
y = z = 0 in (4.9) we g,:C:

u 2 = x "_ + y'" = Ax "z- Bxyo + Dy o. (4.11)

Substituting (4.5) into (4.2) gives:

f(5,]') - sk2eik'l' fv47r A_r(X') F(u; o')e ikx''(_-_) dx', (4.12)

where

s = -6 x [6 x _']. (4.13)

We have Is[ = sin X where X is the angle between _" and 6.

To calculate the scattered power flux we need the scattered magnetic field correspond-
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ing to (4.1). Using the Maxwell equation

one obtains

Wray

1
Hs" = .-----V x Es, (4.14)

t¢o/_o

Hs" - k e -ikn" (8 x f)'. (4.15)
R'`_#0

Substituting (4.15) into (3.14) and noting that according to (4.12) f is of the form f = sC

where s is a real vector perpendicular to _ and C is a complex number, we conclude that

k .,^ (4.16)
S_(x) - 2R_o Ill-°

The incident flux in the definition of the radar cross-section (3.13) is taken to be that

for the original conical beam, namely, ce0/2. Hence (3.13) gives simply:

RCS = 4_rlf[_. (4.17)

Finally, let us keep ready at hand the following geometric quantity which appears in

Eq. (4.12):

x . (i- "6) = -Px - Qy - Sz, (4.18)

where

P -= sin at + sin at,

Q = - cos at sin _t - cos a'` sin _,

S - cos at cos 3t + cos a'` cos 3,--

(4.19)

(4.20)

(4.21)

4.2. Scattering off a Fourier mode

Begin by Fourier decomposing the dielectric constant in the axial and azimuthal direc-
tions:

Aft(X) = Z Agr(r; kz, m)e i(k'_+m¢). (4.22)
k_ ,m

To justify the sum in k, instead of an integral, pretend that there is a periodicity length
L_ and then let Lz --+ _.

Substituting the Fourier expansion (4.22) and the Gaussian incident beam (4.7) into

(4.12) gives:

f = _ ?(k.,m), (4.23)
kz,m

where

sk2e ik4_ f0 °°?(k,,m)- _ [z rdrAgr(r;k,,m)I¢(r), (4.24)

and 1¢ and I_ are the following integrals (for a Gaussian beam):

;!

I_ = ddpe-ikr(Sc°sO+Qsin4_)e im¢, (4.25)

/:[, = e -Dy2°/_r2 dxe-(A*2--Bzlt°)/a2e-iz(kP-k') (4.26)
oo

To perform the integral with respect to ¢ let kQ = k sinft, kS = k cosq_l, so that
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= k(S" + Q2)t/',. and

fO 27x . . -
Is = d4_e"_ e -'k, c°_('_-_) . (4.27)

Using an integral tabulated in Gradshteyn & Ryzhik (1980) (p. 482) we get:

[_ = 2e irn*'imTr./m(-kr). (4.28)

To evaluate I_, let k' = kP - k_ and complete tile square on the exponent to get

[_ - _l /'2 0"e(v°lcr)_[B21(4A)-Dle--ik' B_°/(2A)e--(k'rr)2 /f4n). (4.29)
A1/'2

Note that there is a Gaussian cut-off factor if the beam is off-center: exp{[B"-/(4A) -

D](yo/0.)"}, where the argument can be shown to be negative definite. This corresponds
to the "blip" as the radar scans across the vortex. Setting Y0 = 0 one obtains

sk2eikRt 71.1/20. _ , . . [o¢"f(kz,m) - 2 At�. 2 e (k cr)2/(4A)etmCtlm JO rdr Aer(r;kz,m)Jm(-'kr) (4.30)

This has a cut-off due to finite beam size as represented by the factor e -(k',)2/'(4A)

(k' = kP-k_). It: implies that the contribution to the radar cross-section versus frequency

by a fluctuation in refractive index at wavenumber k_ is a "bump" which is centered at

radio wavenumber k = k_/P and which has a half-width of Jk = 2A 1/e/(p_,). This result

is analogous to the Bragg condition of Tatarski (1961). The cut-off is eliminated when

it has infinite width, i.e. when P = sin _ + sin at = 0. This holds if the receiver is at

the direction of specular reflection (a_ = -at). Note that for backscattering (a_ = at),

perfectly normal incidence (a, = at = 0) is required to eliminate the cut-off. The cut-off

is also eliminated if c_ = at + rr and it corresponds to the receiver being on the other
side of the transmitter relative to the wake.

For the Bessel function beam the analysis is very similar; only the integral I_ is differ-
ent:

/: {t_ = dz 2d,(u/a)e_W_ 4_ [1- (k'0.)2/A] _/_ 0 _<k'_r/A _/'2 < l, (4.31)
oo ula = -'A O, ' k'<rlA 11'2 >1 1,

where u = (Ax'Z) t/'z. In deriving (4.31) the beam offset Y0 was set. to zero for analytical

tractability. Thus one sees that the Gaussian cut-off for the Gaussian beam has been

replaced by a sharp cut-off and the same conditions hold for the elimination of this
cut-off.

4.3. Approximate scattering by three mechanisms

Each of the following three sub-sub-sections specialize the approximate scattering anal-

ysis to each of the three mechanisms discussed in §2.

4.3.1. Radial density gradient. ,n the vortex

We will represent the radial variation (k, = rn = 0) of dielectric constant shown in

figure 1 by a Gaussian:

Act(r) = Aer° exp(--r2/d;_). (4.32)

Then the radial integral in (4.30) is

f0 °° _ ~_
1, = Ae°r rdre-r2/_,Jo('kr) = Ae ° 6---_e-* J,2/4 (4.33)

r 2
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This has a cut-off due to finite vortex core size which is eliminated when k = k(S" +

Q',_)l/'., = 0. This is satisfied for thr_;e cases. The frst is for incident arid scattering direc-

tions that are along the vortex. We eliminate this as a possibility since the assumption

that the beam strength does not vary in the cross-section of the target becomes invalid.

The second case corresponds to _*t = t_ and 3_ = 3_ + 7r. The third case corresponds to

forward scattering (at = -(_t, 3_ = 3t + 7r). ["or this case, the cut-off due to beam width

is also eliminated and therefore this is the optimal arrangement.

4.3.2. Three-dimensional fluctuations within the vortex

As discussed in §2.2 three-dimensional fluctuations should arise in the inner part of the

vortex cores from the elliptic instability. The azimuthal mode excited by this instability

is m = 1 and for this mode we model index of refraction using known forms for velocity

eigenfunctions:

_'_(r; kz, m = 1) = _°dl(k_r)e-_/_, (4.34)

where e is the amplitude of the disturbance and k, is the radial wavenumber which we
set to k, = v/'3k,. This value corresponds to the unstable wavevectors which lie on a 60 °

cone. The resulting radial integral in Eq. (4.30) is given in Gradshteyn & Ryzhik (1980)

(p. 718, 6.633.2):

For large arguments the modified Bessel function I_ has an exponential factor and there-

fore the last two factors in (4.35) can be combined to give a Gaussian bump with respect
to frequency:

_AC0_e

exp 62 _)'2J (4.36)

The center and half width of the bump are given by

ke - (S. 2 + Q'2)1/',, Ak = (S. 2 + Q'2)t/',." (4.37)

We also have a Gaussian bump in Eq. (4.30) due to finite beam width. In order that the
two bumps not annihilate each other they must be very close. In particular the reflectivity

is maximized when they occur at the same frequency. The condition for this is:

S '_ + Q_ = 3P 2 (4.38)

For backscattering Eq. (4.38) simplifies to cot at = ±v_ or a - ±30 °. Thus the radar

beam must be aligned with the wavevector of the instability. As P -_ 0, i.e. as we

approach specular reflection the peak of the beamwidth bump moves to higher frequency

and its width becomes larger. In order to maintain reflectivity the second bump (Eq. 4.36)

must also move out to higher frequency. This is accomplished by letting ($2+ Q'2)1/2 ___O,

i.e. by approaching forward scattering. The increase in frequency yields an increase in

radar cross-section due to the leading k 2 factor in (4.30).

4.3.3. Oval

As mentioned in §2.3.1 the oval can be approximated as a cylinder of radius a (kz =

rrt = 0). In the absence of fluctuations and thermal diffusion the refractive index will be

constant inside the cylinder and zero outside. In this case the radial integral in Eq. (4.30)



Radar reflectivity of _ircraft vortex wakes 21

is

fD a [)
Ac ° r dr .I0 (let) - _Aer .1, (k_L) (4.39)

k

The integral is intractable if we wish to treat error fimction diffusion layers. Following

(4.33), however, we estimate the cut-off due to both lan,inar and turbulent layers at the

boundary of the oval by the following factor applied to (4.39):

e -_J_/4, (4.40)

where 6 is either _fdi_r or (fbr_ids (§2.3.3).

5. Numerical Results

The next three sub-sections contain numerical resuhs for the radar cross-sections of

the 2D mechanisms discussed in §2. Since at this time amplitudes and wavenumbers of

3D disturbances in the vortex cores are not known, plots for this mechanism are omitted.

5.1. Scattering by _D density variations in a vortex

The results of the full Born analysis were obtained using Method A (§3.5) and a Gaussian
beam having a half-width of 0b = 1.5 ° and angle of polarization 3' = 0 is assumed.

In (4.32) the width ¢fe of the well in dielectric constant was taken to be .025b0 and the
depth A_ ° of the well was taken to be -6 × 10-8 (both from figure 1).

Figure 4a plots the radar cross-section at a range of 1 kin. The results of the approx-

imate analysis (lines) agree quite well with those of the Born analysis (symbols) even
though the far-field parameter becomes O (1) (Figure 4b). The general features of the

curves are in accord with the discussion in §4.3.1. One observes (i) a low frequency cut-off

for back-scattering away from normal incidence due to finite beam width (chain-dashed),

(ii) a higher frequency cut-off at the scale of the vortex for back-scattering at normal

incidence (dashed) and specular reflection (dotted), and (iii) elimination of both cut-offs

for forward scattering (solid). The long-dashed curve shows that some increase in fre-

quency and reflectivity can be obtained even somewhat away from the forward direction,

in particular when the transmitter and receiver are both looking up at the vortex with
an elevation of 30 ° .

The limit frequency for the Born approximation is obtained by seJzting Ls = max(ub, 6e)

in (3.12). The result is .f << .74 GHz. This is only marginally satisfied for the rightmost

portion of the figure. From the Mie result for scattering by a sphere we expect that if
the Born approximation were not made, the main difference would be that the solid line,

which increases line_:riy, would begin to oscillate and decrease in average' slope as the

weak scattering app:eximation began to be violated.

To emphasize differences between the full Born and approximate analysis the range

was varied beyond 1 kin. For a point target the radar cross-section should I_= independent

of range but not so for an extended target. For very short ranges the vortex will fill the

beam and we expect the RCS to increase quadratically with range. When _.he range is

large enough that the vortex fills the beam only in one direction then we expect that the

radar-cross should increase linearly. To verify this, the frequency was kept fixed at the

peak for normal back-scattering (f = 5 × 107 Hz) and the range was varied (see circles in

figure 5a). For off-normal back-scattering the frequency was fixed at f = 2 × 106 Hz. The

square symbols in figure 5a show that as the beam radius increases with range the cut-off

becomes sharper. It is interesting to note that the dependence on raa_ge according to the

approximate analysis (dashed line) is quadratic, that is, as if the target were beam filling
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FIGURE 4. (a) Radar cross-section for a vortex due to a Gaussian beam at a range of 1 km.
The symbols correspond to the Born analysis while the lines give the result of the approximate

analysis. _-_ , t_ : back-scattering away from normal incidence (c_t = _ = 30 °,/_t =/_ = 0);
, o : back-scattering at normal incidence (at --= a_ = 0°,/_t = /3, = 0); ........ , o :

specular reflection (at = -ct, = 30°,/Yt = /_ = 0);----- , v : nearly forward scattering

with 60 ° offset in _Y (at = -ct_ = 30°,/3t = 0,_ = 120°). _ , a : forward scattering

(ctt = -a, = 30°,/_t = 0,/3_ = 180°). (b) Far-field parameter, e_ for the top figure.

in both directions. Figure 5b shows that the approximate begins to show deviations when

the far-field parameter becomes greater than unity.

5.2. Scattering by the oval

5.2.1. Comparison with Gilson's (1992) Experiments

Experimental procedures and parameters (Gilson 1992, Roth et al.1989) are now dis-

cussed:
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FIGURE 5. (a) Dependence of the radar cross-section of a vortex on range.-The symbol-
s correspond to the analysis with only the Born approximation while the broken lines give
the result of the approximate analysis. ---- , o : back-scattering at normal incidence
(at = _ = 0°,Bt = B, = 0), f = 5 x 10T Hz; _--- , t: : back-scattering av,'ay from nor-
mal incidence (at = t_, = 30°,_t = _ = 0), f - 2 × 106; _ , reference lines to indicate
quadratic and linear dependence. (b) Far-field parameter, ¢_t for the top figure.

(i) Gilson (1992) reports RCS data in db m 2 per meter of wake length (Gilson 1992,

his p. 37) along the radar beam. Hence, we multiplied his RCS values by our estimate
(101.5 m) for the diameter of the oval. This value is consistent with the size of the wake
in the radar returns.

(ii) The range of the target was 15 km and we chose the case having the lowest flight

altitude (5000 ft) presented in Gilson (1992). The radar was pointed normal to the wake.

(iii) All the radars in the experiment transmit a right circularly polarized (RCP) wave

and receive both right and left circular polarized (LCP) waves. So far our analysis has
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Band ._k_)

(mrads)
VHF 48.8

UHF 19.2

L 10.6

S 5.2

C 5.2

K_ 0.76

(_t, fo fll,n Waveform Pulse width, F.M spread,

(degrees) (GHz) (GHz) ID 7" (its) Afvxt (MHz)
2.37 0.162 0.084 V.25C 0.25 0

0.934 0.422 0.21 U.1C 0.10 0

0.516 1.32 0.39 L2 2 20

0.253 2.95 0.79 $3 3 60

0.253 5.67 0.79 NB 10.2 6

0.037 35 1.0 N2 50 12

TABLE 2. Gilson's radar parameters. A0: half-power beamwidth; 0b: e-' half-width of a

Gaussian beam; rum: Limit frequency for validity of the Born approximation.
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_VHF UHF L S C Ka --75

10 'oO* 10' lo
frequency, Hz

FIGURE 6. Comparison with Gilson's (1992) experiment, o , Gilson's data at 66 secs behind the

plane; * ........ : Full Born analysis for oval; • , -- : Full Born analysis for oval with a slice
of entrained fluid. • .... : Approximate analysis for the oval.

been for linear polarization. However, a CP wave is simply a superposition of two linearly

polarized waves

E(x) = E(x) (_,± i_), (5.1)

H(x) = H(x) (_, + i_.2), (5.2)

where _1 .L _.,. First note that the power flux of a CP wave is simply twice the power

flux of one of its linearly polarized components. If the incident beam has the form (5.2)

then the linearly polarized analysis can be done separately for each component and the

resulting scattered fields added. In this manner, it was verified that for all the cases

presented here, the resulting scattered wave is also CP (but of opposite helicity). Thus

both incident and scattered powers are doubled compared to the linearly polarized case

and the RCS is left unchanged.

(iv) Gilson used a pulsed radar whereas our analysis is for a time-harmonic wave.

Appendix B describes the treatment of a pulse and Table 5.2.1 gives the characteristics

of the waveforms.
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FIGURE 7. Returned pulse envelope calculated for Gilson's (1992) VHF case. The abcissa is
time expressed as a range, c (t- Rr/c)/2; the division by 2 converts from round-trip travel
distance between scattering centers to one-way distance. -- : Oval; ........ : Oval with slice
of entrained ambient fluid.
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Figure 6 compares predicted and measured RCS values. The open circles are measure-

ments 66 secs behind the plane. The predictions of the full Born analysis for the oval are

the solid circles. Each value plotted represents the peak value of RCS(t) in the returned

pulse. The predictions agree with the measurements for bands L, S, and C.

At VHF and UHF, the pulse widths are so short that in the calculation, the two

scattering centers of the target (see discussion after Eq. B 14 in Appendix B) produce
two distinct echoes (see solid line in figure 7). If the electric field of the two echoes

are added, or if a long pulse is used such that the two echoes overlap, then the result

matches the experiment. Such addition can only be justified if signal processing in the

experiment added returns from multiple range gates within the wake but according to W.

Gilson (Private communication) this was not so. Addition could also occur if there are,

in reality, more than two scattering centers in the target spaced sufficiently close to each
other. To test this su_,gestion, a slice of width &_,,t = .20a was removed from the oval to

represent entrained ambient fluid (figure 8). With elevation angle _ = 5.8 °, the value for

Gilson's (1992) experiment, the resulting echo, shown as the dotted line in. figure 7 now

consists of one main pulse. The RCS predictions are shown as the solid triangles in figure
6. The agreement at VHF has now improved but not at UHF which has a very narrow
pulse width. It is possible that the target still has more internal structure we have not
accounted for.

Gilson obtained no return at Ka band (35 GHz). Figure 9 shows the attenuation in

RCS, due to the oval boundary estimated using (4.40). For the thickness of the turbulent

layer the result (solid line) fits observations: there is very little attenuation at 5.66 GHz

but a lot at 35 GHz. The thicker laminar layer, however, attenuates too strongly (dotted
line).

An upper frequency limit fli,, for validity of the Born approximation was defined using
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FIGURE 8. Model for the oval with a slice of entrained ambient fluid.
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FIGURE 9. RCS attenuation due to the oval boundary. _ : 5 = 8di_r = 2.2 cm; ........ :
6 ----5braids = 0.45 cm; o : Frequencies corresponding to Gilson's experiment.

(3.12) by replacing the inequality with an equality and using

Ls = max( Rt sin(0b), a) (5.3)

for the characteristic radius of the scattering region. Table 5.2.1 shows that Gilson's

experiment has frequencies between factors of 2 and 6 above fnm- Therefore in the future

it would be worthwhile to consider another approach such as geometric optics which valid

for large ka but arbitrary Aer.

The analysis predicts a rapid cut-off away from normal incidence. On the other hand,

comparing experiments at 45 ° and 90 ° incidence (Gilson's runs 1 and 17, respectively)

does not reveal significant differences. Moreover, Gilson searched for a flash at normal
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FIGURE 10. Test of various approximations.--: full Born analysis; ........ : with the far-field
Green's function; .... : with the wide cylindrical beam approximation; ----- : with both ap-
proximations. ---- : same a_ _he wide cylindrical beam approximation but without assumption
(d) in Appendix A.2. The thick lines depict linear and quadratic dependence on range.

incidence and found none. We estimated in §2.3.3 that the boundary of the oval is very

likely to be turbulent and this may account for the lack of directional dependence in the

e.xperiment.

5.2.2. Test of various approximations

Range dependence. The effect of various approximations was studied using Method
B by providing the option to use either the far-field or the full Green's function and the

option to use the either the conical beam or the approximate cylindrical 'beam. Figure

10 shows the results. The parameters chosen were those of Gilson's S-band test except

that the range was varied. The result (solid line) of the full Born analysis shows the R 2

behavior for small ranges, characteristic of a beam filling target, followed bv the linear

behavior characteristic of a target that fills the beam in only one direction. As the range

increases both the far-field G (dotted) and approximate beam (dashed) results seem to

agree with each other and to overpredict the RCS of the full Born analysis'(solid). This

agreement partially understandable since both require smallness of a far-field parameter

(see approximation (d) in Appendix A.2) in order to be valid. If we drop assumption
(d), the remaining assumptions ((a)-(c) in Appendix A.2) should begin to hold as the

range increases and the long dashed curve bears this out. When both the far-field G and

approximate beam are used, the result (chain-dashed) gives an R" behavior throughout

which is erroneous for large R. This curve agrees, as it should, with the result of the

approximate analysis; the comparison is not shown for clarity.
Frequency dependence. Figure 11 shows the frequency dependence of the RCS of the

oval for a time harmonic incident wave. The rest of the parameters are those for Gilson's

VHF case and his data (circles) has been included for reference even though they are

strictly for a pulse. Tile solid line is the result of the full-Born amdysis and shows a fiat

frequency dependence. Tile curve is punctuated by oscillations. These oscillations have
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FIGURE 11. Frequency dependence of the RCS for the oval. -- : full Born analysis (normal
incidence); ----- : approximate analysis (normal incidence); ........ : far-field G (normal inci-
dence);-----: full Born analysis (15 ° off-normal incidence); .... : approximate analysis (15 °
off-normal incidence); o : Gilson's experiment.

a regular period (versus frequency) of Af = c/(4a) due to interference between the two

effective scattering centers of the target (see Appendix B). Except for the lowest frequency

decades, the number of plot points is so coarse that the fluctuations appear irregular.

Using the far-field G produces the dotted curve which only slightly overpredicts the RCS.

The curve for the wide cylindrical beam is very close to the dotted curve and is not shown

for clarity. However, when both far-field G and wide cylindrical beam are invoked (to

yield the approximate analysis) the result (long-dashed curve) has an erroneous RCS o( k
behavior. For the same number of plot points, the dotted and long-dashed curves have

the same pattern of oscillations indicating that the period and phase of the oscillations
is the same; only the amplitude is higher. The other two curves with the sharp cut-off at

lower-left are for off-normal incidence (at = at -- 15°).

6. Practical Recommendations

6.1. Prospects for detection of the vortex cores

No test so far has been at frequencies as low as 49 MHz where, according to the anal-

ysis, the density gradient in the vortex cores reflects (see dashed line in figure 4). Since

this mechanism is independent of atmospheric conditions, it is worthwhile to discuss its

potential use in air traffic control (ATC).

(i) It is fortunate that 49 MHz is where many radars operate around the world for

atmospheric profiling. Such radars are called ST or MST radars and they employ an

antenna array. Thus the predicted reflectivity could very well be tested.

(ii) Rain clutter is not a problem at this frequency, though clear air turbulence might
be.

(iii) Most ST radars are used for measurements in the high atmosphere but recently
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various problems associated with measurements at lower heights have been overcome and

a boundary layer profiler has been developed (Vincent et a1.1998) which ha_s a height

coverage of 400 - 3200 m. This radar achieves a range resolution of 150 n, with a pulse

width of l#s.

(iv) For ATC use, the required cross beam resolution (beamwidth) should be a fraction

of the mivimum airplane spacing expected (about 2 nautical miles). The smaller the

beamwidth the larger the required array but, since the antenna gain is larger,' less power

is required. Desiring both modest array size and modest power we impose a cross beam

resolution of 0.3 n.m. at ranges < 3 km resulting in a 10 × l0 array with elements spaced

3 m apart and a power of only 360 W. Since this value is surprisingly modest, details of
the calculation follow.

For an antenna array the half-power beamwidth (in degrees) broadside to the array is
(Skohfik 1970, p. 11-2):

100

A0_/2 _ v/-_-_d, (6.1)

where N_t is the number of elements, and the gain on transmit and receive is: Gt = Gr
zrN, t. The transmitter power required for detection is:

(4_r)3R4Np × SNR (6.2)
Pt = GtGrA2 Lsy s X RCS'

where Np = -185 db W and Lsys = -7 db are the noise power and system loss for an

ST radar (Kingsley & Quegan 1992, p. 199). SNR = 20 db is the desired signal to noise
ratio, A = 6 m is the wavelength and RCS = -77 db, a value we calculated for a vortex

at 3 km using the beamwidth of the 10 × 10 array.

(v) ST radars have limited steering capability, usually just a few fixed beam directions

but this may be sufficient to observe the approach path of a few adjacent runways at

a fixed distance from the touch-down point. Since it is unlikely that three dimensional

disturbances will exist in the vortex across a broad spectrum of wave angles, detection
may be possible at only normal incidence.

(vi) Finally let us note that the oval will also scatter at 49 MHz.

The above estimates have ignored smaller aircraft types and detection of vortices of air-
caft in landing connfignrations. Such considerations would have to be taken into account

in a full-fledged feasibility study.

6.2. A note on the role of engine exhaust

At approach, the exhaust of a large aircraft has a temperature of 477 K and each engine

emits 1200-6000 ib/hr of water vapor (P. Spalart, Private communication), tf we consider

the temperature cor:tribution alone (the first term in Eq. 2.1) we get A¢_ = -2.1 x 10 -4.

This is roughly two orders of magnitude greater than for the density variation in each

vortex and for atmospheric density stratification and would lead to a 40 db greater radar

cross-section. However, Gilson (1992) found that the wake RCS at 1 km behind the plane

did not change when the engines were run at idle or full power. This is probably due

to turbulent mixing of the exhaust with the ambient. Diversion of some engine exhaust

into the laminarising flow of tile vortex cores may allow the exhaust to maintain its heat
further downstream.

A simpler alternative is to detect the exhaust itself as in the Noonkester & Richter

(1980) experiment. Using the radar trace of tile exhaust spiral (their figure 5) we deduced

that the circulation of the vortices is 400 m2/s. In clear weather, art even simpler alter-

native is to view the exhaust spiral in infrared in order to deduce tl,e vortex circulation.
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To estimate the contribution of water vapor in the exhaust, use the upper value of

6000 Ib/hr/engine and assume an exhaust diameter of :2 m. This yields a partial pressure

of vapor equal to l.l mb and a contribution of ?_¢t of 3.7 x 10 -6 which is much smaller

than that due to temperature.

7. Conclusions

(i) The measured radar cross-sections in the experiments of Gilson generally agree with

the values caclulated using the simple picture of a oval carrying atmospheric fluid as it

descends. The lack of directional dependence is not predicted by the analysis, however,

estimates indicate that this is because the boundary of the oval is very likely turbulent.

(ii) The density gradient in the vortices themselves produces index of refraction vari-

ations comparable to those produced by the oval. This provides a scattering mechanism

independent of atmopsheric consitions and could be detected using an ST type radar at
about 49 MHz.

(iii) The use of a far-field Green's function is not a priori valid for a wake that is

coherent along its length and therefore a more general analysis was developed. The use

of a far-field G was found to produce a constant db error in the radar cross-section

for large ranges. The neglect of beam conicality produces similar errors. When both

assumptions are made, the dependence of radar cross-section on range is altered from

the correct linear behavior (as expected for a target that fills the beam in one direction)

to quadratic behavior. Similarly, the frequency dependence is altered from being flat to
¢(k.

We thank Drs. W. Gilson and P. Ingwersen (MIT Lincoln Labs.) for providing us with

information on the experiment, Dr. P. Spalart (Boeing) for suggesting that we account
for density variation inside a vortex core and for supplying the information referred to

in the text. Thanks are also due to Prof. J. Jimenez (Univ. Madrid) for suggesting the

inclusion of water vapor in the refractive index and to Dr. M. Wang (CTR) for help with
integrals.

Appendix A. The electric field in the incident beam: Ei(x, y, z)

The incident electric field is obtained using aperture aaltenna analysis (Silver 1949)

where one derives the far diffraction field from knowing the field on a surface (the "aper-
ture") near the antenna. We shall take the aperture to be circular.

For convenience we shall, in the manner of a subroutine, use a dummy coordinate

system (x, y, z) centered on the aperture. The plane of the aperture is xy and z is normal

to the aperture. These coordinates should not be confused with those in the body of

the paper where they refer to wake coordinates and where (x', y', z') refer to aperture
coordinates.

A.1. Conical beam

According to Silver (1949), the electric field created in the far zone by a plane aperture

A on which the electric field is specified to be E = E_(x')_ is the following integral over

the aperture (Silver 1949, p. 167, his Eq. 124):

Ei(x) = 4_rRelk_(l + cos0)3A/ E_(x')eik*"'/lx[ dx" (A 1)
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Here (r, 0) are tile spherical polar coordinates of x, 0 being the polar angle :rleasured

front the z axis. Equation (A 1) is derived starting from vector Kirchhoff integrals and

introducing several approximations valid in the limit of small wavelength compared to

aperture diameter in which case the significant portion of tile energy is confined to small

0. In addition, the phase of the field on the aperture has been assumed to be constant.

For an axially symmetric distribution of E_" on the aperture the integral in (A 1)
becomes

= 2rr/Q'dQ'E_ (e').Io(kQ' sin 0), (h 2)IA

Two aperture illuminations are considered. For the case of a

we get

E0, Q <_ o,,E_ (6) = 0, otherwise, (A 3)

IA = 2WEOLO_J1 (kpa sin0)
kQa sin 0

For the case of Gaussian illumination of the aperture

E_(_) = Eoe -(_/'°)_,

we get

(A 4)

(A 5)

In = Tro'_Eoexp (-l k'2a_ sin'2 0) , (A6)

thanks to an integral tabulated in Gradshteyn & Ryzhik (1980, p. 717, 6.63.4) To calculate

the radar cross-section according to (3.13) requires the maximum _lue at the target of

the time averaged power flux Si = 1�2Re {Ell x H_'}, where Hi can be obtained from the

Maxwell equation Hi = 1/(iwl_o)V x Eli- If in evaluating V x Eli from (A 1) we retain

only the leading order term (O (I/r)) and introduce #o = 1/(c"e0) we get

1 (A 7)Si = -_ Ceo ( Eix ) '2 r

where E i denotes the x component of Ei. The radar cross-section is independent of

the amplitude Eo since both incident and scattered powers are proportional to E_. For
convenience, we chose

2Rt/(ike'Za), for uniform aperture illumination,Eo = 2Rt/(ika_), for Gaussian aperture illumination, (A 8)

in order to make equal to eikR' the maximum value of E i with respect to 0 at fixed
r = Rt. The denominator in (3.13) is then

1
maximum power density in incident beam at target = _Ceo. (A 9)

In the calculations, instead of specifying the aperture radius as ttle input parameter, we
specify the half beamwidth 0b and from it calculate the implied value of _oa. For the

Gaussian beam 0b is defined to be where /a drops to e -l of its peak value and for the

Bessel beam it is defined to be the location of the first zero thus giving

3.83171 2

#a - ksin0b ' o'a -- ksin0b" (A 10)
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A.2. Approximate cylindrical beam

The cylindrical beam for the approximate scattering analysis in §4 of the paper is obtained

after introducing four approximations in (A 1): (a) Replace cos0 by 1. This is valid for

a small angular beamwidth. (b) Replace r in tile denominator by a constant range Rt.

(c) Similarly, in (A2) replace sin0 = u/r by u/Rt, where u = _,_ + y" is the normal
distance from the beam axis. (d) Replace e ikr with e itcz. Approximations (b)-(c) are valid

when the relative change in beam width across the near and far ranges of the target is

small For approximation (d), however, a condition similar to the the far-field condition
(3.1) must hold:

rL_
_n--S<< I. (A ll)

Introducing the stated approximations into (A I) gives:

ik ^ its:
E = 2--_--_txe la, (A 12)

Substituting (A4) and (A 6) for la into (A 12), replacing sin0 with u/Rt, using (A 10),

defining Ub/Rt = sin 0b, and substituting values of Eo from (A 8) we get

E = ._e _k: 2Jr (u/a)
u/a ' (A 13)

a =_-Ub/3.8371, (A 14)

for the Bessel function beam and

E = _e ikz exp(-u2/a'2), (A 15)

a =- Ub, (A 16)

for the Gaussian beam. For the incident power flux in the cylindrical beam we use the
same value, given by (A 9) as in the original conical beam.

Appendix B. Scattering by a pulse

Since the scattering problem is linear, treatment of a pulse is simply a matter of Fourier

superposition of the results of the time-harmonic analysis. The analysis was performed
for back-scattering at normal incidence.

We begin by reducing the originally linear vector problem to a linear scalar problem.

This will provide the set-up for using formulae already derived in Ishimaru (1978).

For the time harmonic analysis the incident electric field (Eq. A 1) has the form:

E--i(x, t; a;) = _ Re [Fi(x, w)e-i_t] . (B 1)

As in Appendix A we are using x to denote aperture coordinates. For the accompanying
magnetic field we assume the same spatial dependence:

Hi(x, t;w) = CZo :_ Re [Fi(x, w)e-'_t] . (B 2)

According to Maxwell's equations E is related to the curl of H and therefore E and

H should in general have different spatial dependence. However, to the extent that the

wavelength is much smaller than the beamwidth, derivatives of F(x, w) normal to the

beam axis will be much smaller than derivatives along the beam axis and the forms (B 1)

and (B 2) will nearly satisfy Maxwell's equations and be divergence free.

Henceforth we will write the incident field as a function of time only, taking it to be
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evaluated at tile point x = (0, Y0, 0) where the beam centerline intersects the centerplane

of the target. By a Fourier synthesis of (B 1) and (B 2) in time an arbitrary L., time
dependence can be constructed:

El(t) = x Re [,,i(t)e-i_°t] , (B 3)

Hi(0 = _o:Y Re [ui(t)e-i_°t] , (B4)

where we have chosen to write the time dependence as the product of a carrier e -i_ot

and a complex modulation ui(t). The complex modulation is itself written as a product:

ui(t) = I(t)e io(t), (n 5)

where f(t) and ¢(t) are real and describe amplitude and phase modulation, respectively.

We now assume that for the time harmonic analysis the scattered field evaluated at

the receiver is also of the form (B 1) and (B 2) with F| replaced by Fs. This assumption
was verified to be true from the numerical results. Therefore by Fourier superpositi0n we
can write for arbitrary time dependence:

Our incident and scattered fields thus depend only on the scalar functions ui(t) and us (t)

and we are thus set-up to use Ishimaru's (1978, vol. l, p. 94) discussion for scattering by
a pulse. Using the fact that scattering is a linear and causal problem, Ishimaru derives

the following "input/output" relation for the complex modulation of the scattered pulse
in terms of the modulation of the incident pulse:

u_(t) = Ui(_o)H(aj +a_o,t)e-i_t &o, (B8)

where

i£Ui(w) = _ ui(t)e i_:t dr. (B 9)
o_

H(w,t) has the interpretation that if ui(t) = 1 (i.e. we have the time harmonic case)
then us(t) = H(wo, t). In the time harmonic analysis we chose the incident field to have

a normalization such that ui(t) = eike'. Hence H(wo, t) is simply the us we calculate in

the time harmonic analysis divided by e ikRt . Since we have considered a steady target,
thus losing the doppler effect, H(w0, t) does not depend on time.

Let us obtain H(w) implied by the result of the approximate analysis for the oval. For

backscattering at normal incidence and using the asymptotic form of the Bessei function
for large ka, Eqs. (4.30) and (4.39) give:

eik(n'+n') (ka)t/" aAe°r cos (2ka - 37r) (B10)Es(x) = _ 4R_

The bandwidth of the pulse is typically small compared to the center frecluency and so

ka can be considered to be constant when outside the cosine. Hence, over the bandwidth
of the pulse

H(w) = Ae ikR" cos 2ka - -_zr , k = w/c, (B l l)

where

A = Ae°ra(k°a) l/2
' (B 12)
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is a real constant independent of w, and k0 is the wavenumber corresponding to the

center frequency. For the fidl Born analysis of tile oval, it was found that H(,,z) had a

behavior approximated by (B 11) but with a different (and complex) vahm of A which
was obtained by fitting the form (B 11) to tile numerically obtained results.

Substituting the form (B !!) into the input/output relation (B 8) gives the complex

modulation u_(t) of the returned pulse. When this is substituted into (B 6) one obtains:

(Bi3)
/(t_)cos[,(t-) z0t__+ ¢_ + _'},_l

where

t' t R_ 2a tL t R_ 2a (B 14)
C C C C

a isthe radius of the oval,and 0A isthe phase angleof .4.Equations (B 13) and (B 14)

have the followinginterpretation.The returned pulse can be thought of as consistingof

the incidentpulse reflectedtwice,each time with reflectioncoefficient.4/2 and phase

shifts_ba = -F3rr/4.The two reflectionsoccur at z = +a. The time shift-R_/c accounts

for the traveltime from the point z = 0 to the receiverwhile the additionaltime shifts

-l-2a/caccount for the round-triptime requiredto travelfrom z = 0 and the two points
Z ---- "4-12.

For the oval with the sliceof entrainedambient fluid,the behavior of H(w) was more

complicated than (B II).In thiscase the procedure followedwas to firstcalculateH(w)
for w spanning an intervalAw consistingof few pulse bandwidths about the center

frequency.Actually a convenientauxiliaryquantity T(w) was calculatedsuch that

H(w, t) - T(_)eikn"
n, (Bis)

Next T(w) was multiplied by a Hanning window and Fourier analyzed such that:

= ,_--_m(,w - wo) • (B 16)

Knowing the coefficients T_ one can obtain the complex modulation of the received signal
by substituting (B 16) and (B 15) into (B 8):

1 ( R_ 27rm'_

Rectangular and Gaussian forms of unit amplitude were implemented for the amplitude
modulation:

1, ttl _<_-/2,f(t) = 0, elsewhere ' f(t) = e -P/'2. (B 18)

where 7- is the pulse duration. In this paper only the results for the Gaussian pulse are
plotted since the rectangular pulse gave very close RCS results (within 0.25 db for a few

spot checks). For FM a linear frequency variation (chirp) was considered:

_(t) = rrat 2. (B 19)

Within the pulse width, the spread AfVM in the local frequency is

AfFM = I@-. (B 20)

The sign of a (up-chirp vs. down-chirp) was found to not matter. Table 5.2.1 gives 7-and
--/-/XfFMfor Gilson's tests.
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The instantaneous power flux density vector associated with tile incident pulse (B3)

and (B 4) is

-Si = Ei x Hi = "_C_o f2(t) cos _ (_b(t) - _ot). (B 21)

Finally, the instantaneous scattered power flux density vector associated with (B6)

and (B 7) is

g_(t) = _CeolE_(t)l 2. (B 22)

From these we calculate an instantaneous RCS:

RCS(t) = 4rrR _ [Ss(t)[ (B 23)
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